

# Concept briefing to NASA Headquarters October 2, 2001

"Exobiological Exploration of Europa (E3) - Europa Lander"



Frederic Stillwagen NASA Langley Research Center f.h.stillwagen@larc.nasa.gov

Ram Manvi / Chuck Weisbin Jet Propulsion Laboratory rmanvi@jpl.nasa.gov Charles.R.Weisbin@jpl.nasa.gov



# **Europa Lander Mission Overview**

Place a Lander on the surface of Europa

Survivability: Mrads & >-140°C

Drill and navigate through the frozen surface (Cryobot)

Swim and navigate the liquid 'oceans' (Hydrobot)

Search for evidence of 'LIFE'

Report findings







# Europa Lander Specifications (& goals)

- ➤ Survival: ~2 Years
  - ➤ Surface Lander (2); Cryobot (2); Submersible (1)
- **▶** Provide capability to penetrate up to 3 Km of frozen surface
- Lander Dry Mass: 560 to 800 kg (to include Mapping instruments)

On Surface Facility: ~325 to 450 kg

**Cryobot:** ~ 110 to 150 kg

Submarine:~ 125 to 200 kg

**Power: Submarine: 50 to 120 W;** 

**Cryobot:** ~ 1kWt; 20 to 65 W

- Descent & Landing with precision guidance capability for enhanced performance; hazard avoidance capability for increased reliability
- **≻**Communications between Lander, Cryobot and Hydrobot at various rates
- >Avionics redundancy, and hot backup for increased reliability
- **➢ Direct-to-Earth semaphores and communications (commands, telemetry & video/images)**; communications support with a Relay Orbiter
- **▶**Rad Hard Electronics for Lander on the Europa Surface:
  - >1 Mrad Survivability during 2 Years



# **Europa Lander Mission Characteristics**



#### **Technical Challenges**

- Radiation Environment: The Europa Mapper/Lander total dose environment while in orbit (~1-2 months) is harsh compared to current experience
- Radiation Environment: The Relay total dose environment is dependent on Jupiter orbit characteristics and 2+ year lifetime
- The Europa Mapper/Lander must survive & operate with high reliability during the 2-year mission in extreme radiation→ several (Mrads)



# **Europa Lander Mission Characteristics**



#### **Technical Challenges**

- The Europa Lander must survive & operate with high reliability during the 2-year mission in extreme thermal environments (> -140°C).
- Cryobot/Hydrobot must achieve Substantial ice penetration (~3-5 km)
- Cryobot/Hydrobot must be robust, intelligent, mass & power efficient for complete autonomy. Survivability for ~1 year
  - Melt Control
  - Stability & Control
  - Autonomous Descent
  - Intelligent Decision Making
  - Thermal Control & Related Fluid Mechanics
- Through-the-ice data transmission of science data and camera pictures; transfer data to Earth
- Science platform & electronics miniaturization and life detection; mass reduction



# **Europa Lander: Trade Space**

- Propulsion: Advanced Liquid, SEP, NEP, NTP
- Europa Landing:
   Direct, Pump-Down, Autonomous Hazard
   Avoidance, Precision Landing
- Survivability:Rad Hardened, Shielding, Thermal Control
- Power:
   Nuclear Sources (Small Reactor, Radio-Isotopes), ARPS, Stirling Engine
- Surface Penetration:
  Drills, Cryo-bot, structures
- Communications: Tethered, RF, X/Ka-band, Optical
- > Hydro-bot Mobility: Tethered Submersible, Submarine
- Life Detection:Mass Spectrometers, SEM, DSC, CEP



- •Compile Cost & Performance information and document the sources
- •Begin with technology data, capabilities, & descriptions available in NASA Inventories & data Resources; Consult DoD and Industry archives and Technology programs
- •Consult with NASA, & Space domain technology experts to categorize the fidelity of the cost & confidence in meeting performance requirements, and to define a risk and performance metric/figure of merit for each Europa Lander technology element.



# **EL - LIFE DETECTION**

Surface / Subsurface Research and Operations Concepts



By
Chuck Weisbin
Ram Manvi (Presenter)
&
Wayne Zimmerman
JPL
10/02/2001





# **Europa Lander Concept**





# Europa Lander technologies for R&D

| CAPABILITY        | PERFORMANCE           | TECHNICAL CHALLENGES                                                                                      |  |  |  |  |  |
|-------------------|-----------------------|-----------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                   | METRIC                | &                                                                                                         |  |  |  |  |  |
|                   | (Now/Required)        | BREAKTHROUGH TECHNOLOGIES                                                                                 |  |  |  |  |  |
|                   |                       |                                                                                                           |  |  |  |  |  |
| 1. Europa Surface | 0.005 (km)/3 to 4     | Autonomous Operation in very Low-Temperature hard Ice                                                     |  |  |  |  |  |
| Penetration       | (km)                  | & Ice/ Non-Ice Composite Material: Motion, Intelligence,                                                  |  |  |  |  |  |
|                   |                       | Navigation, Control, Sample Acquisition, Acoustic Image<br>Interpretation of Complex Media, Communication |  |  |  |  |  |
| 2. Extended       | 0.04 (Yr.)/ 2 (Years) | <b>Exposure to Intense Radiation (Several Mrads), Very Low-</b>                                           |  |  |  |  |  |
| Survivability     |                       | Temperature, and possibly Corrosive media, Very High                                                      |  |  |  |  |  |
|                   |                       | Ambient Pressures: Radiation Hardness, Adaptive Skin                                                      |  |  |  |  |  |
|                   |                       | /Surface Treatment, Intelligent Thermal Control, AI for                                                   |  |  |  |  |  |
|                   |                       | Dynamic Ice Environment, Liquid Filled Glass Ports (for the Submersible) to withstand pressure( ~ kbars). |  |  |  |  |  |
|                   |                       | Submersible) to withstand pressure (~ kbars).                                                             |  |  |  |  |  |
| 3. Life Detection | 200 (kg)/ 5 (kg)      | Structure, Mass Distribution, and Morphology of Organics,                                                 |  |  |  |  |  |
|                   |                       | Chirality of Molecules: Automated Sample                                                                  |  |  |  |  |  |
|                   |                       | Handling/Routing, GCMS with multi columns, HPLC, on-                                                      |  |  |  |  |  |
|                   |                       | board ESEM, & Raman Spectroscopy                                                                          |  |  |  |  |  |
| 4. Autonomous     | 0.35 (# )/4.26(#      | Control, Robustness, Redundant AI Protocols: In-situ                                                      |  |  |  |  |  |
| Hardware          | DigOps /W-cm^2)       | processing of Science Data & Reduction, AI for Data Storage,                                              |  |  |  |  |  |
|                   |                       | Feature Recognition, Robotic Sample Acquisition, Site Selection,                                          |  |  |  |  |  |
| 5. Communication  | 10 (kbs)/100 (kbs)    | High Data Rate & High Volume Communication through                                                        |  |  |  |  |  |
| 2. Communication  |                       | Ice/Non-Ice Composites, and Water. Data Storage ~150 Mb,                                                  |  |  |  |  |  |
|                   |                       | High Compression, Wide-cone Tranceivers, Autonomous.                                                      |  |  |  |  |  |



# Europa Lander technologies for R&D

| CAPABILITY                                          | PERFORMANCE METRIC (Now/Required)                          | TECHNICAL CHALLENGES & BREAKTHROUGH TECHNOLOGIES                                                                                                                                                                                                                                                     |  |  |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 6. Propulsion and Transit ~10-100 Kg/KW/ ~4.4 Kg/KW |                                                            | 10-20 mt mass delivery to Jovian System; ~ 3mt delivery to Europa Orbit; ~C3 of 90 for Europa (versus 16-25 for Mars); Mapper/Lander delivery to Europa after 1-2 months; Major Radiation Exposure: Nuclear Propulsion technologies, low/high thrust technologies for use with planetary exploration |  |  |  |  |  |
| 7. Autonomous Hazard Detection and Avoidance        | 50 km X 300 km (Mars)<br>~10 km (Moon) /<br>.5 km (Europa) | Automatic re-direction of Lander during descent and adherence to landing within .5 km of targeted site:  Terrain imaging and processing, autonomous redesignation                                                                                                                                    |  |  |  |  |  |



# "E<sup>3</sup> - Europa Lander" Summary

### **Summary**

This study only focused on one concept of many, bearing technology indications that could change due to timelines and objectives. The E<sup>3</sup> - Europa Lander concept recognizes technologies that apply to more than one enterprise, one mission or one focus.

#### **Future RASC involvement**

Advance the study into a whole program of outer planet explorations, and complete analyses and concept trades to further define technologies that benefit multiple areas in an accelerated timeframe.



# **Backup Slides**



# **RASC Approach**

#### **Identify Breakthrough Technology(s)**

- How does it enable Europa exploration? Other missions?
- Alternative capabilities

#### **Alternative Technical Approach**

- How do they compare?
- Current state of readiness for the Europa Lander Mission? Now apply RASC effort towards technology usage

#### **Performance Projections**

- Quantitative metrics to describe the current state of art and practice?
- Projected future capabilities
- Additional R&D costs?
- Performance pay-offs?

#### **Development/Validation Strategy**

- What technical work needs to be completed for the technology to advanced and be ready for use?
- Risks

#### **Technology Roadmap**

- Funding priorities necessary to bring the selected technology to readiness 6 or higher?
- What technology options can be available for mission use in 2025 and beyond time frames?

#### **Budget Profiles**

 Estimate resource requirements for development and validation? To achieve a specific probability of success for a given technology?





# Figure of Merit (FOM)





# **EL Technologies: Preliminary** identification for R&D Funding

#### **Baseline Values**

|   | R&D (M \$)                              |      | Performance |      | Thitial | Final |        | Logic    |
|---|-----------------------------------------|------|-------------|------|---------|-------|--------|----------|
|   | Technobgy                               | Cost | Pnow        | Preq | FOM     | FOM   | dp ÆC  | M etric  |
|   |                                         |      |             |      |         |       |        | (X10^3)  |
| 1 | Deep Ice Penetration (km)               | 35   | 0.005       | 4    | 0.001   | 1.0   | 0.0285 | 22828.57 |
| 2 | Extended Survivability (years)          | 20   | 0.04        | 2    | 0.020   | 1.0   | 0.0490 | 2450.00  |
| 3 | Excellent Life Detection (kg)           | 40   | 200         | 5    | 0.025   | 1.0   | 0.0244 | 975.00   |
| 4 | Autonomous Hardware; (#dig ops/W-square | 15   | 0.35        | 4.26 | 0.082   | 1.0   | 0.0612 | 744.76   |
| 5 | High Volume COMM (kbs)                  | 14   | 10          | 100  | 0.100   | 1.0   | 0.0643 | 642.86   |
| 6 | Thermal Control System Hardware (kg)    | 15   | 7           | 3    | 0.429   | 1.0   | 0.0381 | 88.89    |
| 7 | High Data Rate COMM; (BPS/W-gram)       | 12   | 90          | 180  | 0.500   | 1.0   | 0.0417 | 83.33    |

#### Sensitivities to Cost (1.25), Pnow (1.5); and Preq (0.75)

|   |                                             | R&D (M\$) |        |       |       |       |        |          |
|---|---------------------------------------------|-----------|--------|-------|-------|-------|--------|----------|
|   | Techno bgy                                  | Cost      | Pnow   | Preq  | FOM   | FOM   | dP/dC  | LM etric |
|   |                                             | New       | New    | New   | New   | Final |        | (X10^3)  |
| 1 | Deep Ice Penetration (km)                   | 43.75     | 0.0075 | 3     | 0.003 | 1.0   | 0.0228 | 9120.00  |
| 2 | <b>Excellent Life Detection (kg)</b>        | 50        | 300    | 3.75  | 0.013 | 1.0   | 0.0198 | 1580.00  |
| 3 | Extended Survivability (years)              | 25        | 0.06   | 1.5   | 0.040 | 1.0   | 0.0384 | 960.00   |
| 4 | Autonomous Hardware; (#dig ops/W-square cm) | 18.75     | 0.525  | 3.195 | 0.164 | 1.0   | 0.0446 | 271.24   |
| 5 | High Volume COMM (kbs)                      | 17.5      | 15     | 75    | 0.200 | 1.0   | 0.0457 | 228.57   |
| 6 | Thermal Control System Hardware (kg)        | 18.75     | 10.5   | 2.25  | 0.214 | 1.0   | 0.0419 | 195.56   |



### **Europa Mission Propulsion and Transit**

- Mission strategy was chosen to minimize mass and time in Jupiter's radiation environment--Key technologies targeted are nuclear electric propulsion (NEP) and radiation hardening
- In-space propulsion system technology justification:
  - Projected low-thrust propulsion technologies yield mass fractions 2 to 20 times better than projected high-thrust systems
  - Distance from Sun precludes use of solar power; nuclear chosen as best option to maximize synergy of vehicle systems
- NEP technology:
  - Performance metric: NSTAR specific mass = 18.11 kg/kW, target for Europa mission = 4.4 kg/kW (1-10 kW system)
  - This technology is KEY for this mission, but since cost data is uncertain,
     NEP was not ranked as one of the top 5 technologies (see later chart)
  - Possible development cost sharing with other outer planets missions
- Current mission concept requires a lift capability of 10-20 mt to nuclear-safe Earth departure orbit
  - Payload includes Relay Orbiter (600-800 kg), Mapper/Lander (1100-1300 kg), and In-space propulsion system for delivery to Jupiter, then Europa
  - Nuclear-safe launch concepts were not addressed specifically but could require in-space assembly and/or autonomous rendezvous.



## **Europa Mission Descent and Landing**

- Landing is accomplished with simple orbital transfer from the mapping orbit established with transfer propulsion system (Lunar-like, powered landing using chemical propulsion)
- Mapper/Lander descends to Europa for surface science phase
  - Communications are provided during descent, landing, and surface operations
  - Mapping phase enhances navigation (state and surface knowledge) accuracy, producing small landing errors
  - Lander fuel for 100 m of local terrain avoidance has been included in mass estimates
- Key technology targeted is hazard detection and avoidance (terrain imaging and processing, autonomous redesignation)



# Optimal Relay Drop-off Intervals as a Function of Ice Temperature and Depth.





## **Comm - RF Signal Attenuation in Ice**

#### RF Signal Attenuation in Ice as a Function of

• Ice Temperature, and Assumed Impurities (Salt Water).







## **Planetary Exploration - Communications**



